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» Autonomous vehicle assessment is crucial for technological advancement. Yet, simulated @ T fanor e ;,/_'_'_, __________ ,M_,,_,f/
evaluation poses challenges like ensuring physical law compliance and reflecting real-world ‘ | T 7
naturalness and diversity, making simulated testing difficult. — _ A

» We present a new approach integrating data-driven methods and kinematic constraints to generate Path Choice of Probability
testing trajectories as a probabilistic process with Gaussian distribution. Fusion technology < Dataset |
enables. relying on 1nitial scene info, enhancing practicality and convenience for AV trajectory Fig.1. Background vehicle (BV) has decided to change lanes
generation.

, , , , , . while evaluating the performance of the autonomous vehicle
» Ablation studies on kinematic constraints and data separately show the effectiveness of our model. (AV). The kinematically feasible path choices deviate from

cach other with different probabilities 1n the naturalistic dataset.
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2). In the testing process, the 1nitial scene 1s firstly obtained, and a variable € 1s sampled from N(0,1)for 40% - — issimil |
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Fig.4. Ablation study of kinematic constraints (VAE

A . .
3). The network generates the BV state sg, and checks whether it has reached the target lane while w/o Cons) and kinematic model (VAE w/o Kine).

AVstate s5,, is updated accordingly, following the yellow workflow.
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Fig.5. The distribution of testing vehicle state and relative range. maneuver distributions with real vehicles.

For a set of tested trajectories pairs using initial relationships from real dataset, maneuvers of BV are analyzed.
Three key parameters are: Velocity v; ¢ , Heading angle 6; ; , Relative Range Ax; ; , as shown 1n Fig.5. (a)

LlContributions and Conclusions

» Probabilistic Trajectory Generation.
We model trajectory generation as a probabilistic problem, employing Gaussian distributions to introduce realistic variations.

» Scene-Dependent Testing Trajectory Generation.

Our approach emphasizes the generation of testing trajectories based on 1nitial scene information, different from the conventional methods that
rely on historical trajectory data.

» Our method prove that VAE model is effective in creating statistically realistic trajectories and simulating genuine collision events. The
generated trajectories closely mimic the planning behaviors of real drivers, as they are trained on human-driven data.
» Future work will focus on integrating the model with large language model to generate realistic and robust testing long-time domain scenarios.
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